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Objectives

* |dentify causes of low-frequency streamwise shock-train oscillations
in rectangular cross-section geometry ducts.

* |solate upstream-propagating perturbations and assess whether their
characteristic velocity supports low-frequency oscillation.

* Explore propagation pathways and modes of upstream travel.



Problem Definition

Experimental reference (Benton et al. 2024 [1])

Behavior:

* Unsteady shock streamwise meandering
known as shock-train unsteadiness

Repercussions

* Unsteady loads on vehicle

* Unsteady pressure recovery, combustion,
and thrust

* Propensity for unstart

Possible causes:

* Innate shock-boundary layer
interaction (SBLI) instabilities [2]

* Upstream turbulent boundary layer
super-structures [3]

* Downstream perturbations [4]
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Investigating downstream perturbations as a cause of streamwise shock unsteadinesss




Computational Approach: Large Eddy Simulations (LES)

High-fidelity computational fluid dynamics used to simulate the
isolator shock-train.

Mach = 1.7, Rey, = 50,000 (h = channel half height)

Computational Domain
. (%9,2) = (29.6061,2.0,1.0)
« (§,j,k) = (1241,321,65)

Spatial scheme: 6t order compact, switching to 3™ order
Roe near shock discontinuities.

Spatial filtering (oscillation damping): 8t" order implicit.
Time integration: 3™ order Runge-Kutta.
Digital filtering (turbulent inflow). No sub grid model
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Computational grid with boundary conditions. Every 5™ point shown.
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Doak’s Momentum Potential Theory: Acoustics

Obijective: Identify acoustic content

Tool: Doak decomposition separates acoustics
from hydrodynamic and thermal content.
Process:

A Helmholtz Decomposition separates mass flux
(pu;) into solenoidal (B;) and irrotational
(—=Vy) components.

Continuity equation invoked.

The irrotational (—V) component is further
decomposed into acoustic (—Vi,) and thermal
(—=Vy ) fields which are solved via means of
three Poisson equations (in practice only (1)
and (2) must be solved)

PE. Doak 1989 [4]
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Space-Time Analysis
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Feedback frequencies

Purpose: Construct scenario for perturbation feedback
mechanism within channel and compare frequencies with
experiments.

Setup:

1. Assume perturbations begin at 15t shock, purely in
streamwise direction

2. Perturbations travel downstream at either u or u + ¢ velocity
measured from frequency-wavenumber analysis.

3. End of isolator = beginning of combustor. Assume
downstream perturbation creates combustor instability and
upstream perturbation.

4. Perturbations travel upstreamatu — ¢

Experimen

tal Frequency Spectrum

Hunt and Gamba 2019 [4]
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Low frequency shock train motion < 0.1f,

Frequencies are scaled by pseudoshock length.

Pseudoshock length = L, I—/

L, (sim) = 14.6h (nondimensionalized by channel half height h)

u u+c | u-—c t=(u+c)—u | ¢ =u—(u—-c) | Capg
-2 1 0306 | 1.074 | -0.662 | 0.768 0.968 0.868
1 1
ffaSt =7 L feonvective = . L.
p p il 200 D
u+c u-—c u 'u-—c

ffast—scaled = 0.41
0.410f. > 0.1f,

0fc feonv—scatea = 0.209f,
0.209f, > 0.1f,

Pseudoshock = shock-train + turbulent mixing region

Scaled frequencies are 2 to 4 times higher than the

experimental low-frequency unsteadiness




Velocity Filtering

Do perturbations only travel in streamwise direction? Or do they also

bounce off walls?

Purpose: Use velocity filtering to isolate upstream and downstream
velocity signals in acoustic field.

Method: Frequency-wavenumber space can differentiate upstream
and downstream waves.

Procedure:

Convert line data into frequency-wavenumber space

Set positive velocity data to zero

Convert back to space-time

Repeat for all lines
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Waves travel obliquely. Suggests bouncing off walls. May
lengthen the pathway of perturbations and reduce frequency




Conclusions

* Time-accurate isolator simulation was constructed.

Doak’s decomposition employed to isolate acoustic perturbations.

Demonstrated the presence of upstream-running perturbations.
* First identified using space-time analysis for near-wall streamwise line sample.

Velocity of perturbations in the shock-train zone were measured.
* Frequency-wavenumber technique used to obtain ensemble averaged velocities.

Framework for feedback frequency constructed.
* Downstream perturbations carried by u and u + ¢ signals.
e Upstream perturbations carried by u — c.
* Frequencies scaled by pseudo-shock length.
* Did not agree with experimental low-frequency dynamics.

* Velocity-filtering employed in frequency-wavenumber space.
 Visually isolating upstream-downstream waves showed angled wave fronts bouncing off walls.
* Can lengthen propagation pathway, lengthen cycle period, reduce frequency.
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