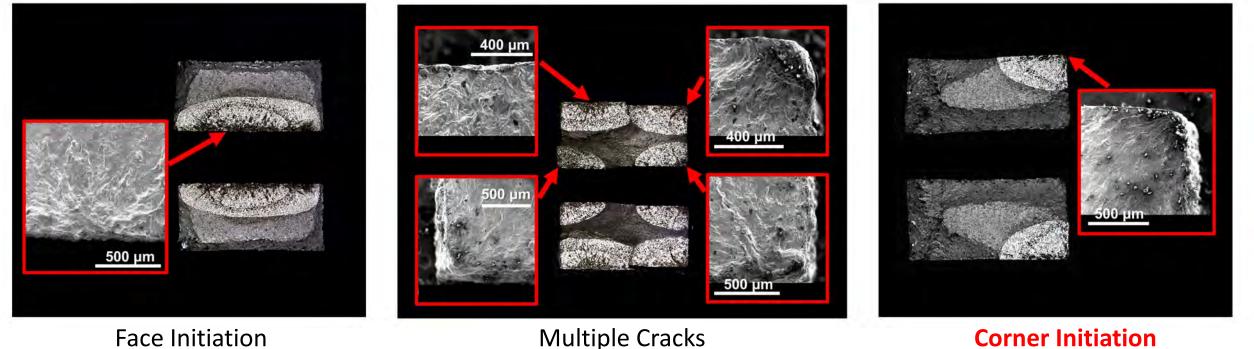


Investigation of Surface Roughness Effects on Additively Manufactured Metals Under Dynamic Loading

Student:	Rachel Tullis			
Student Email:		vans.382@wright.edu		
Faculty:	Dr. Nathan Klingbeil and Dr. Joy Gockel			
Faculty Email: na		athan.klingbeil@wright.edu / joygockel@mines.edu		
AFRL Sponsor:		Dr. Dino Celli (dino.celli.1@us.af.mil)		
AFRL Directorate:		e: RQ		

Background

Fatigue Performance in AM


- Additively manufactured (AM) parts often exhibit undesirable fatigue properties
 - Material discontinuities (porosity and surface roughness) act as crack initiation locations and decrease fatigue life
- Surface roughness has been shown to be the **predominant mechanism behind fatigue** failure in as-printed (unmachined) AM parts [Gretemeier et al., 2016; Gockel et al., 2019]
 - Surface finishing is not always feasible for complex internal geometries

Effects of Cross-Sectional Shape on Fatigue

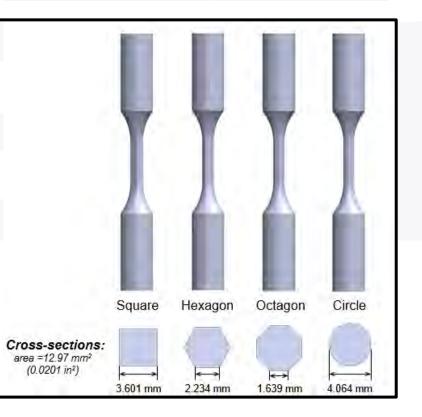
- Early results indicate that geometries containing corners (squares, diamonds) can exhibit up to a 10% decrease in fatigue life compared to circular cross-sections [Dolan et al., 1950]
- Specimens containing corner flaws have **higher crack propagation rates and SIFs** as compared to embedded surface flaws [Toribio et al., 2017]
- Polished AM specimens with a **rectangular hourglass shape tend to fail at the corners** of the cross-section, even when other stress concentrators are introduced to the geometry [Tullis, 2023; Eidt, 2020]

Motivation

- Three failure behaviors seen in prior fatigue study [Tullis et al., 2023]
- Fatigue failures tend to initiate on corners in rectangular specimens
 - For similarly-sized flaws, the stress intensity factor is much higher at corner locations
 - Varying the cross-sectional geometry is expected to influence fatigue due to changes in corners

orner Initiatior >75% of failures

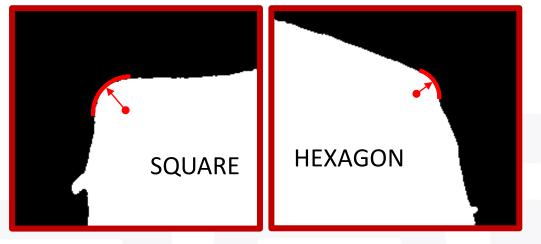
Methods


Specimen Geometry

- Four specimen sets with variable cross-sectional shapes throughout the gage section
 - Square (Four 90° corners)
 - Hexagon (Six 120° corners)
 - Octagon (Eight 135° corners)
 - Circle (No corners; baseline)
- Cross-sectional areas are constant, regardless of shape

AM Builds

- 40 alloy 718 specimens printed vertically on Open Additive PANDA printer
 - 10 replicates of each geometry
 - 2 separate builds
 - Constant parameters throughout
- Stress relieved and precipitation heat treated in accordance with current standards for AM alloy 718 [ASTM F3055; AMS 5662]


	Bulk	Contour
Laser Power (W)	230	150
Scan Speed (mm/s)	800	560
Hatch Spacing (µm)	70	N/A
Layer Thickness (µm)	30	



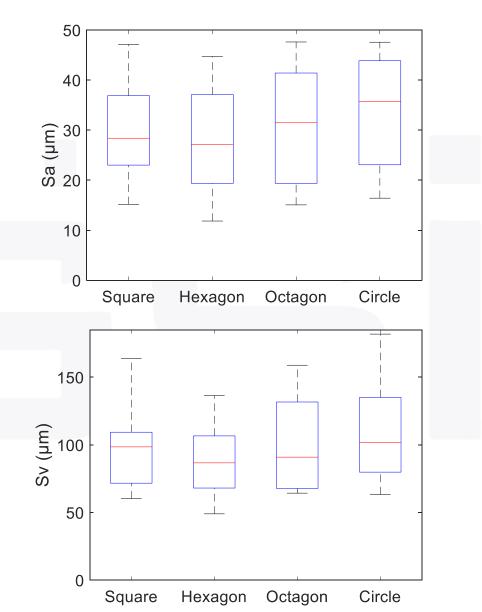
Methods

Surface Characterization

- Area measurements are used rather than line measurements [ISO 25178-2:2021]
 - Height data obtained from a large surface area on the specimen
 - Captures more of the surface data
- Computed Tomography (CT) Scans
 - Used to quantify the printer accuracy (corner radius) and analyze porosity
 - Initial results: More acute corners have larger radius due to manufacturing
 - Future work: Obtain porosity distributions and more comprehensive 3D surface roughness data, and evaluate crack initiation sites post-fracture
- Structured Light (SL) Scans
 - Allows for calculation of standardized surface metrics
 - Average roughness (Sa) and maximum valley depth (Sv)

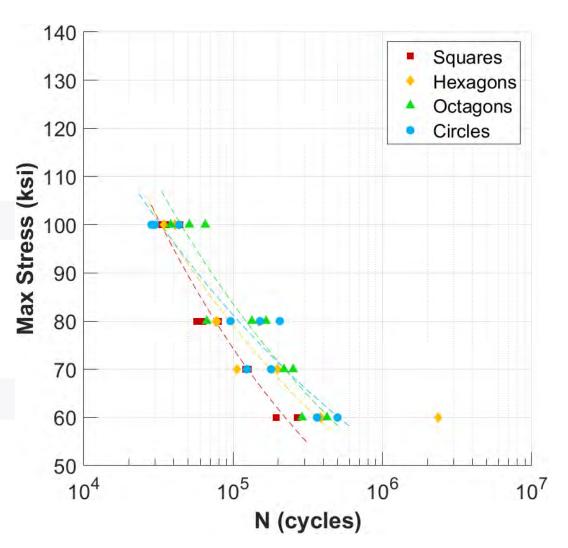
Methods

Fatigue Tests


- Fatigue testing performed on an MTS servo-hydraulic load frame at the AFRL Turbine Engine Fatigue Facility (TEFF)
 - Load ratio, R = 0.1
 - Frequency = 20 Hz
 - Four stress levels (100 ksi, 80 ksi, 70 ksi, and 60 ksi)
- Specimens tested to failure
- Compliance monitored to determine initiation and growth lives

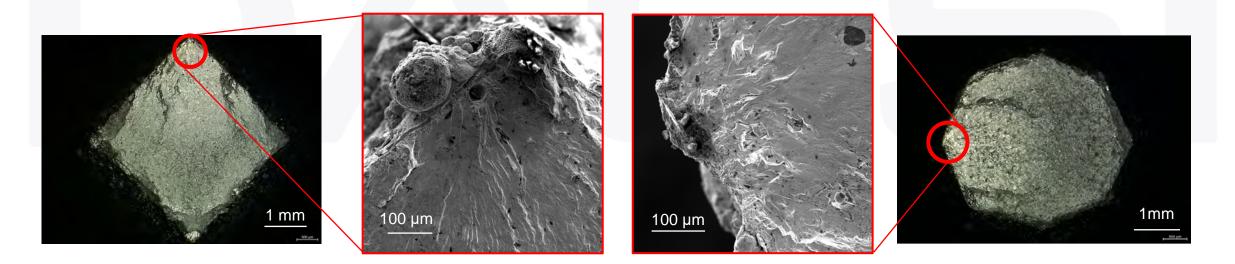
Results

Surface Roughness Characterization


- Surface metrics calculated using data from SL surface scans
 - Boxplots indicate Sa and Sv for each of the geometries
- Specimen geometry does not appear to significantly affect surface roughness
 - This is expected due to the constant AM processing parameters
- Wide spread of data

Results

Total Fatigue Life


- 4 completed stress levels: 100, 80, 70, and 60 ksi (689, 552, 483, and 414 MPa)
- Cross-sectional geometry appears to slightly affect fatigue performance
 - Slope of trendlines appear to vary due to crosssectional geometry
 - Weak trend: Sharper corners \rightarrow lower life
- A more detailed analysis is expected to further explain and collapse the data
 - Compliance analysis can separate initiation and growth life components
 - SIF (rather than stress alone) is expected to affect fatigue life

Results

Fractography

- Optical microscopy and scanning electron microscopy (SEM) are used to determine crack origins
- Most samples appear to initiate cracks near the specimen corners
 - For similarly-sized flaws, the stress intensity factor is much higher at corner locations

Conclusions

- Specimen geometry was not shown to significantly influence surface roughness
 - Large amount of scatter in data
- Cross sectional geometry appears to slightly affect fatigue life
 - Slope of trendline (stress sensitivity) appears to be affected by cross-sectional geometry
 - SIFs, rather than stress alone, are expected to have stronger relationships
 - Compliance analysis and determination of initiation life may also provide further explanations
- Many specimens appeared to initiate cracks near the corners
- Future work:
 - Further utilize CT scans to evaluate crack initiation sites
 - Analyze SIFs for further explanation of data