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Objectives

Goal: Expand research on multi-scale numerical modeling strategies to transient heat transfer
problems with highly localized loading conditions through establishing implementation

strategies and characterizing the temporal convergence behavior of GFEM with general time-
integrators

1. Assess the temporal convergence, accuracy and stability of the GFEM for a variety of
spatial domains and parameters
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2. Investigate computational savings compared to standard methods
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{3. ldentify nuances and implementation strategies of the GFEM }




Challenges with Hypersonic Analy5|s

* Modern day engineering problems in
hypersonic vehicle design are dominated by
heat transfer

* Fine-scale and transient loading conditions
e Coupled, multi-physic interactions

* Current multi-scale modeling strategies lack
power to resolve all spatio-temporal scales
on a global level

* Fine meshes needed for spatial gradients

Image courtesy of Jon Willem, The Ohio State University
* Above is the flow and temperature field over a

* Broad regions of refinement for transient

feature.s o N torgue tube experiencing sharp thermal
* Small time steps to maintain temporal stability gradients on a small scale due to shock-boundary
* High-fidelity solutions often require large layer interactions
amounts of CPU power, time and memory * Accurately resolving local features across all
! ~ spatio-temporal scales, while avoiding local mesh
Question: How can we simultaneously capture refinement and advanced multi-scale methods, is
fine-scale features and global phenomena essential for practical modeling of multi-physic
iy - . . . . . . simulations
within a multi-physics simulation efficiently?




Motivation

* Heat transfer in extreme environments is multi-scale
and coupled with fluids and structural analysis
 Mathematically, heat transfer is a scalar equation
Implementation differs from vectoral analysis of
fluids and tensorial analysis of structures
* Enabling solutions of heat transfer problems in
extreme conditions is essential for high-speed vehicle
design
 The GFEM incorporates solution-tailored shape
functions to alleviate the need for local mesh
refinement
e Current work has focused on ability for GFEM to
capture localized features efficiently, spatial
convergence criteria, and stability with focus on fluids
and structural problems in multi-scale environments
* Lack of research to extend these concepts to heat
transfer and transient analyses of general time

integrators has led to a gap in knowledge Handling localized flow [Shilt et al. 2020]
Hypothesis: GFEM can enable high-fidelity features Computational

solutions of extreme multi-scale heat transfer efficiency
problems that are currently prohibitive in the

Stability

Stabilizing advection dominated fluid

problems [Shilt et al. 2021]

*  Reduction of critical time step in
structural dynamics [Sanchez-
Rivadeneira, Duarte 2021] and heat
transfer [O’Hara et al. 2010]

Handling sharp thermal
gradients [O'Hara, Eason,
Duarte 2011]

» 3D fatigue crack propagation

[Pereira et al. 2009] and

multi-site cracking [O’Hara et

al. 2016]

Retain expected spatial

convergence

criterion [O'Hara, Eason,

Duarte 2011, 2009]

*  Accurate solutions on coarser
meshes and larger time steps
[O’Hara, Eason, Duarte 2009]

* Relieve shear-locking in Stoke’s

context of multi-physics simulations



Overview of the GFEM

Modifies FEM framework to introduce solution tailored “enrichments” into standard FEM

space

FEM Approximation Space
{Qoa (x)}lo\c’=1

*

GFEM Enrichment Space
Mgy
¢aj — {‘Pa(x)l'aj(x)}jzl

Enrichment Space

{Laj (x)}nioi * GFEM shape functions formed
1= through a product of standard
e Can be any function; FEM shape functions and enriched
typically derived from a trial space

priori knowledge

Includes discontinuity into

Final approximation: u"*(x) = Y ,¢;. @, (%) Zr-n_“l g jLej(x) :
h J= shape function

GFEM elegantly handles fine-scale features by directly introducing these features into the
computational domain, alleviating local mesh refinement




Model Problem from Merle and Dolbow 2002

1.8 - . . .
Qx,t) = Ca—(xt) ka = (x, 1) L6} m Smm

1.4 F

X
u(x, t) = ( ¥ (x=xrrone(®) 4 sm( ; )) et Ll

xfront(t) =xo +Vt

ulx,t)
—
oo

Property Definitions
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1 ¥ Location
mm [Merle and Dolbow 2002]
250 — Q={0<x<500mm,0<y<250mm,0<z<30mm}




Internal Energy Profile for Different Approximation Spaces

Element Dimensions
Numb f El t . Time St
umBber ot Elements (4-point Tetrahedron) ime Step

Internal Energy (U(t))

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000 |-

* Energy profile prediction depends on
ability for approximation space to
capture the spike in

1500 4mm X 125mm X 30mm 0.0009766s
(Width x Depth X Height) (1024 steps)
m— Quadratic GFEM
| inear FEM

—@)— Quadratic+Exponential GFEM ||

loading/temperature

* Low order FEM and GFEM cannot capture
this fine-scale feature (5mm) on a coarse
mesh of 4mm wide elements

* Exponential GFEM does capture the
gradient without mesh refinement

e GFEM enables accurate multi-scale
solutions on coarse meshes

Ut) = j k(Vu(x, t) - Vu(x, t)) dQ)
Q

Quadratic+Exponential GFEM: Quadratic GFEM:

X —X 2 —Xq
Laj = {?’ - a’e_(x—xfront(t)) } Locj = {1,95 hx }

1
Corresponds to FEM DOF



Temporal Convergence with Different Time-Integrators

Crank- ) Quadratic GFEM * Shown left are accurate multi-scale
102 + | = Nicolson solutions with larger time steps
: (CN) @ LincarFem
Backward Quadratics * GFEM using solution-tailored,
Euler (BE) == Exponential GFEM exponential enrichments obtains
= 100 temporal convergence
= ;
= * Lower order approximations
S obtain no temporal convergence
S : 1500 4mm : .
SO * Spatial error dominates due to not
10 capturing the spike
0.998  GFEM enables temporally
: convergent multi-scale solutions
1074
1
S — — — LError(U(t)) _ {Zn(Uexact(tn) _Uh (tn))Z}z
— -3 _ -1 =
107 10 1077 10 ’ Ln(Uexace (™)) *
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Effect of Temporal Gradient Strength on Convergence

Number of Elements | Element Width
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* The volumetric heat capacity (pc)
controls the magnitude of the
temporal gradient

* Analytical solution is independent of
this
e Stronger gradient corresponds to a

substantial increase in error at
large time steps

* Both time integrators approach the
same convergence rates and error
levels when the time-scale of the
moving singularity is resolved at
larger pc

e Stronger temporal gradients
increases error for both methods,
but degrades convergence of the
Crank-Nicolson method



Conclusions and Future Work

* Temporal convergence obtained with time-dependent, solution tailored
enrichments on coarse grids on a 3D domain

* Convergence study demonstrates GFEM can achieve accurate solutions on coarse
meshes and larger time steps in multi-scale problems

 Strengthening the temporal gradient increases error and induces temporal
oscillations (not shown) in both methods while degrading the performance of

Crank-Nicolson

* Initial stability study (not shown) and convergence results indicate potential for
GFEM to increase critical time steps with solution-tailored enrichments

* Results provide improved confidence in the ability of GFEM to enable simulations
of design critical multi-scale, multi-physics problems of hypersonic systems

* Future Work
* In-depth error analysis to determine the temporal behavior of Crank-Nicolson and Backwards
Euler in the GFEM framework

* Explore the use of global-local enrichments for the model problem
* Analyze the stability and convergence behavior of the Forward Euler method in 3D

. In_vestigat_e the convergence behavior of the temporal-integrators when the singularity is not
aligned with the primary mesh direction
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