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Objectives

Goal: Expand research on multi-scale numerical modeling strategies to transient heat transfer 
problems with highly localized loading conditions through establishing implementation 
strategies and characterizing the temporal convergence behavior of GFEM with general time-
integrators

1.      Assess the temporal convergence, accuracy and stability of the GFEM for a variety of 
   spatial domains and parameters

3.          Identify nuances and implementation strategies of the GFEM

2.          Investigate computational savings compared to standard methods



Challenges with Hypersonic Analysis
• Modern day engineering problems in 

hypersonic vehicle design are dominated by 
heat transfer

• Fine-scale and transient loading conditions
• Coupled, multi-physic interactions

• Current multi-scale modeling strategies lack 
power to resolve all spatio-temporal scales 
on a global level

• Fine meshes needed for spatial gradients
• Broad regions of refinement for transient 

features
• Small time steps to maintain temporal stability 

• High-fidelity solutions often require large 
amounts of CPU power, time and memory

• Above is the flow and temperature field over a 
torque tube experiencing sharp thermal 
gradients on a small scale due to shock-boundary 
layer interactions

• Accurately resolving local features across all 
spatio-temporal scales, while avoiding local mesh 
refinement and advanced multi-scale methods, is 
essential for practical modeling of multi-physic 
simulations

Question: How can we simultaneously capture 
fine-scale features and global phenomena 

within a multi-physics simulation efficiently?

[Witeof and Neegard et al 2014]

Image courtesy of Jon Willem, The Ohio State University



Motivation
• Heat transfer in extreme environments is multi-scale 

and coupled with fluids and structural analysis
• Mathematically, heat transfer is a scalar equation

Implementation differs from vectoral analysis of 
fluids and tensorial analysis of structures

• Enabling solutions of heat transfer problems in 
extreme conditions is essential for high-speed vehicle 
design

• The GFEM incorporates solution-tailored shape 
functions to alleviate the need for local mesh 
refinement

• Current work has focused on ability for GFEM to 
capture localized features efficiently, spatial 
convergence criteria, and stability with focus on fluids 
and structural problems in multi-scale environments

• Lack of research to extend these concepts to heat 
transfer and transient analyses of general time 
integrators has led to a gap in knowledge 

Computational 
efficiency

Handling localized 
features

Stability

Gap

• Stabilizing advection dominated fluid 
problems [Shilt et al. 2021] 

• Reduction of critical time step in 
structural dynamics [Sanchez-
Rivadeneira, Duarte 2021] and heat 
transfer [O’Hara et al. 2010]

• Handling sharp thermal 
gradients [O'Hara, Eason, 
Duarte 2011]

• 3D fatigue crack propagation 
[Pereira et al. 2009] and 
multi-site cracking [O’Hara et 
al. 2016]

• Retain expected spatial 
convergence
 criterion [O'Hara, Eason, 
Duarte 2011, 2009]

Hypothesis: GFEM can enable high-fidelity 
solutions of extreme multi-scale heat transfer 
problems that are currently prohibitive in the 

context of multi-physics simulations

• Accurate solutions on coarser 
meshes and larger time steps 
[O’Hara, Eason, Duarte 2009]

• Relieve shear-locking in Stoke’s 
flow [Shilt et al. 2020]



Overview of the GFEM

FEM Approximation Space

Enrichment Space
*

GFEM Enrichment Space

𝐿𝐿𝛼𝛼𝛼𝛼(𝑥𝑥)
j=1
m𝛼𝛼  

𝜑𝜑𝛼𝛼(𝑥𝑥) 𝛼𝛼=1
𝑁𝑁

𝜙𝜙𝛼𝛼𝛼𝛼 = 𝜑𝜑𝛼𝛼(𝑥𝑥)𝐿𝐿𝛼𝛼𝛼𝛼(𝑥𝑥)
j=1
m𝛼𝛼  

Includes discontinuity into 
shape function 

Final approximation: 𝑢𝑢ℎ 𝑥𝑥 = ∑𝛼𝛼∈𝐼𝐼ℎ 𝜑𝜑𝛼𝛼(𝑥𝑥)∑𝛼𝛼=1
𝑚𝑚𝛼𝛼  �𝑢𝑢𝛼𝛼𝛼𝛼𝐿𝐿𝛼𝛼𝛼𝛼(𝑥𝑥)

Modifies FEM framework to introduce solution tailored “enrichments” into standard FEM 
space

• Can be any function; 
typically derived from a 
priori knowledge

• GFEM shape functions formed 
through a product of standard 
FEM shape functions and enriched 
trial space

GFEM elegantly handles fine-scale features by directly introducing these features into the 
computational domain, alleviating local mesh refinement



Model Problem from Merle and Dolbow 2002

𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 𝑥𝑥0 + 𝑉𝑉𝑡𝑡

𝑢𝑢 𝑥𝑥, 𝑡𝑡 = 𝑒𝑒−𝛾𝛾 𝑥𝑥−𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓)
2

+ sin
𝜋𝜋𝑥𝑥
𝐿𝐿

𝑒𝑒−𝑓𝑓

[Merle and Dolbow  2002]

𝑄𝑄 𝑥𝑥, 𝑡𝑡 = 𝜌𝜌𝑐𝑐
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

𝑥𝑥, 𝑡𝑡 − 𝑘𝑘
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

𝑥𝑥, 𝑡𝑡

Ω = {0 < 𝑥𝑥 < 500𝑚𝑚𝑚𝑚, 0 < 𝑦𝑦 < 250𝑚𝑚𝑚𝑚, 0 < 𝑧𝑧 < 30𝑚𝑚𝑚𝑚}

Property Definitions

𝝆𝝆𝝆𝝆 𝜋𝜋
𝐿𝐿

2 𝐽𝐽
𝐾𝐾 ∗ 𝑚𝑚𝑚𝑚3

𝒌𝒌 1
𝑊𝑊

𝐾𝐾 ∗ 𝑚𝑚𝑚𝑚
𝑳𝑳 500𝑚𝑚𝑚𝑚
𝒙𝒙𝟎𝟎 125𝑚𝑚𝑚𝑚
𝜸𝜸 1

𝑽𝑽 250
𝑚𝑚𝑚𝑚
𝑠𝑠

Spike Width 5𝑚𝑚𝑚𝑚



Internal Energy Profile for Different Approximation Spaces

Quadratic GFEM

Exact

Linear FEM
Quadratic+Exponential GFEM

• Energy profile prediction depends on 
ability for approximation space to 
capture the spike in 
loading/temperature

• Low order FEM and GFEM cannot capture 
this fine-scale feature (5mm) on a coarse 
mesh of 4mm wide elements

• Exponential GFEM does capture the 
gradient without mesh refinement

• GFEM enables accurate multi-scale 
solutions on coarse meshes

Quadratic+Exponential GFEM: 

𝐿𝐿𝛼𝛼𝛼𝛼 =  1 ,
𝑥𝑥 − 𝑥𝑥𝛼𝛼
ℎ , 𝑒𝑒− 𝑥𝑥−𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓)

2
Quadratic GFEM:
 𝐿𝐿𝛼𝛼𝛼𝛼 = 1, 𝑥𝑥−𝑥𝑥𝛼𝛼

ℎ
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𝑈𝑈 𝑡𝑡 = �
Ω
𝑘𝑘 ∇𝑢𝑢 𝑥𝑥, 𝑡𝑡 � ∇𝑢𝑢 𝑥𝑥, 𝑡𝑡 𝑑𝑑Ω

Number of Elements Element Dimensions
(4-point Tetrahedron) Time Step

1500 4𝑚𝑚𝑚𝑚 × 125𝑚𝑚𝑚𝑚 × 30𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊𝑑𝑑𝑡𝑡ℎ × 𝐷𝐷𝑒𝑒𝐷𝐷𝑡𝑡ℎ × 𝐻𝐻𝑒𝑒𝑊𝑊𝐻𝐻ℎ𝑡𝑡

0.0009766s
(1024 steps)

Corresponds to FEM DOF



Temporal Convergence with Different Time-Integrators

𝐿𝐿2Error(U t ) =
∑𝑓𝑓(𝑈𝑈𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑓𝑓(𝑡𝑡𝑓𝑓) −𝑈𝑈ℎ (𝑡𝑡𝑓𝑓))2

∑𝑓𝑓(𝑈𝑈𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑓𝑓(𝑡𝑡𝑓𝑓)) 2

1
2

𝐿𝐿 2𝐸𝐸
𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

𝑈𝑈
𝑡𝑡 100

10−2

102

10−4

10−110−310−4 10−2

Δ𝑡𝑡

Crank-
Nicolson 
(CN)

Backward 
Euler (BE)

Quadratic GFEM

Linear FEM

Quadratic+
Exponential GFEM

Number of Elements Element Width

1500 4𝑚𝑚𝑚𝑚

• Shown left are accurate multi-scale 
solutions with larger time steps

• GFEM using solution-tailored, 
exponential enrichments obtains 
temporal convergence 

• Lower order approximations 
obtain no temporal convergence 

• Spatial error dominates due to not 
capturing the spike

• GFEM enables temporally 
convergent multi-scale solutions

0.998



𝜌𝜌𝑐𝑐 = 𝜋𝜋
𝐿𝐿

2 𝐽𝐽
𝑚𝑚𝑚𝑚3∗𝐾𝐾

 

𝜌𝜌𝑐𝑐 = 0.1 𝐽𝐽
𝑚𝑚𝑚𝑚3∗𝐾𝐾

𝜌𝜌𝑐𝑐 = 1 𝐽𝐽
𝑚𝑚𝑚𝑚3∗𝐾𝐾

               

𝜌𝜌𝑐𝑐 = 10 𝐽𝐽
𝑚𝑚𝑚𝑚3∗𝐾𝐾

 

 

Effect of Temporal Gradient Strength on Convergence

CN BE

Increasing 
𝜌𝜌𝑐𝑐

1.0084

𝐿𝐿 2𝐸𝐸
𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

𝑈𝑈
𝑡𝑡

Δ𝑡𝑡

Number of Elements Element Width

3000 2𝑚𝑚𝑚𝑚

• The volumetric heat capacity (𝜌𝜌𝑐𝑐) 
controls the magnitude of the 
temporal gradient

• Analytical solution is independent of 
this

• Stronger gradient corresponds to a 
substantial increase in error at 
large time steps

• Both time integrators approach the 
same convergence rates and error 
levels when the time-scale of the 
moving singularity is resolved at 
larger 𝜌𝜌𝑐𝑐 

• Stronger temporal gradients 
increases error for both methods, 
but degrades convergence of the 
Crank-Nicolson method



Conclusions and Future Work
• Temporal convergence obtained with time-dependent, solution tailored 

enrichments on coarse grids on a 3D domain
• Convergence study demonstrates GFEM can achieve accurate solutions on coarse 

meshes and larger time steps in multi-scale problems
• Strengthening the temporal gradient increases error and induces temporal 

oscillations (not shown) in both methods while degrading the performance of 
Crank-Nicolson

• Initial stability study (not shown) and convergence results indicate potential for 
GFEM to increase critical time steps with solution-tailored enrichments 

• Results provide improved confidence in the ability of GFEM to enable simulations 
of design critical multi-scale, multi-physics problems of hypersonic systems

• Future Work
• In-depth error analysis to determine the temporal behavior of Crank-Nicolson and Backwards 

Euler in the GFEM framework
• Explore the use of global-local enrichments for the model problem 
• Analyze the stability and convergence behavior of the Forward Euler method in 3D
• Investigate the convergence behavior of the temporal-integrators when the singularity is not 

aligned with the primary mesh direction 
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