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Motivation

• Applications in signal processing, navigation, 
and quantum information are turning from 
electronics to photonics for solutions

• Several challenges exist with photonic 
integrated circuit (PIC) design

• Packaging
• Component fabrication variations
• Large component footprint: increases cost/size 

of PICs, low component density

• Photonic inverse design is a promising 
solution to these issues

Packaged Si-PIC [1] L. Carroll et al.,
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Introduction and Proposed Solution
• Efficiently coupling light into photonic waveguides 

requires precision alignment and transverse optical 
mode matching

• Classical approach: active alignment, lensed fibers, 
inverted taper structures

• Goal: Use inverse design to create an efficient spot 
size converter for fiber-to-chip or chip-to-chip 
coupling

J. L. Gonzalez, et al., 
Submicrometer PSAS-to-PSAS 
Self-Alignment Technology 
for Heterogeneous 
Integration" [2]
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Inverse Design
• Classical photonic components are designed using 

intuitive geometries
• Inverse design uses adjoint method optimization

• Can be formulated for any passive, linear photonic 
component

• Finite-difference frequency-domain solver (FDFD)
• Open-source Stanford Photonic Inverse Design 

framework (SPINS-b) [3]
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𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐭𝐭𝐭𝐭 𝐩𝐩 ∈ 𝐒𝐒

Frequency domain 
inverse design 
optimization 
objective 
formulation

Example 90 degree bend optimization 
using SPINS-b
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2D Inverse Design Cleaved SMF-28 Fiber-to-
Chip Edge Coupler
• Optimization parameters:

• 10.4 µm Gaussian source, λ = 1.55 µm wavelength, 11 x 25 µm footprint
• Objective function = overlap of field solution with the fundamental TE silicon nitride waveguide mode
• Optimized on a CPU matrix solver with a 2D field solution

• Fabricated on the silicon nitride (SiN) American Institute for Manufacturing Integrated 
Photonics (AIM) passive multi-project wafer (MPW) process
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2D Inverse Design Cleaved Fiber-to-Chip Edge 
Coupler Results
• Lumerical finite-difference time-domain (FDTD) verification: 10.22 

dB loss transmittance to the fundamental waveguide TE mode

• Experimental: 8.47 dB insertion loss

• High insertion loss as a result of using a 2D FDFD implementation, 
and failure to converge to a binary permittivity distribution

• Takeaways:
• Proved that inverse design is a promising solution for designing 

efficient spot size converters 
• Optimization solver needs to be in three spatial dimensions to 

accurately model the problem
• SEM imaging of the fabricated device helped determine fabrication 

and feature size constraints for future devices

Magnitude of Complex E field

6FDTD verification of the 2D coupler



3D Inverse Design of a Lensed Fiber-to-Chip 
Edge Coupler
• Biconjugate gradient GPU solver based on 

the NVIDIA CUDA architecture substantially 
reduced computation time allowing for 3D 
optimization

• Modeling the cleaved fiber problem in three 
dimensions requires a large simulation 
domain which is computationally 
demanding and accumulates numerical 
error due to ill-conditioned matrix

• Optimization of a lensed fiber coupler reduced 
simulation domain size, 3.5 µm beam 
diameter vs. 10.4 µm cleaved fiber diameter

• As a baseline, coupling from a lensed fiber 
directly to the fundamental SiN TE 
waveguide resulted in a 4.41 dB loss in 
Lumerical FDTD 

Lensed fiber-to-waveguide FDTD simulation 7



3D Inverse Design Fiber-to-Chip Edge Coupler 
Preliminary Simulation Results
• The FDTD field solution at the focal point 

of a lensed SMF-28 fiber was used as the 
source initial condition in the FDFD solver

• The computational graph was formulated 
in a similar manner to the 2D problem, 
several alterations were made to optimize 
for different objectives:

• No fabrication constraints, 4 x 10 µm 
footprint, 2.77 dB loss

• Minimum feature size constraint, 4 x 12 µm 
footprint, 5.37 dB loss

• Minimum feature size constraint, wideband 
optimization between 1.5 and 1.6 µm, 4 x 14 
µm footprint, 4.53 dB loss at λ = 1.55 µm

Magnitude of Complex E field

8Graphic Design System (GDS) file and FDTD field solution



Summary and Direction

• The coupler designs were laid out for fabrication on 
an AIM SiN MPW run along with several other inverse 
design components and coupling experiments

• A GPU-based FDTD solver is being implemented that 
would expand the possibilities for rapid inverse 
design [4]

• Exploit the inherent bandwidth property of time-domain 
solutions

• Larger computational domain without the error in FDFD

• In addition to couplers, inverse design of coupled 
mode resonator components [5] and optical pulse 
shaping using nonlinear materials [6] is being 
explored 

Permittivity and instantaneous time-domain electric field solution of a waveguide 
simulated with fdtd-z

August AIM tapeout layout
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