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• 1-3 µm Remote Sensing at ≥ 200 K
• Greenhouse gas imaging
• Topographic imaging
• Defense applications

• Current applications are motivated to reduce factors that increase the overall 
SWaP-C of a lidar system and significant cryogenic cooling is a contributor

• Linear mode Avalanche photodiodes (APDs) have demonstrated promising 
behavior due to their internal gain from impact ionization but further research 
is necessary to drive down the dark current mechanisms at high operating 
temperatures that impact the SWaP-C  

• Sb-based III-V alloy APDs may provide a solution to this with current investigations into 
mitigating the surface dark current

Background and Motivation

SWaP-C: Size, weight, power and cost[1-5]
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Linear Mode APDs and Their Figures of Merit

Impact Ionization Internal Gain Important Equations

Signal-to-Noise Ratio (SNR)

𝑆𝑆𝑆𝑆𝑆𝑆 =
(𝐼𝐼𝑝𝑝𝑝𝑀𝑀)2

2𝑞𝑞 𝐼𝐼𝑝𝑝𝑝 + 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐵𝐵𝐵𝐵 𝑀𝑀 𝑀𝑀2 + 𝜎𝜎𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

Excess Noise Factor

𝐵𝐵(𝑀𝑀) = 𝑘𝑘𝑀𝑀 + 1 − 𝑘𝑘 2 −
1
𝑀𝑀

[6-8]

Keys to “High Performing” APDs:

 Quantum Efficiency, QE

 Multiplication Gain (M)

 Dark Current (Idark)

 Excess Noise Factor F(M)

Attractive for photon starved applications  due to impact ionization resulting in gain 
but comes with the tradeoff of noise that must be mitigated to achieve high 

performance 3



• Dark current is component that contributes to the noise of a 
detector, thereby decreasing its overall signal-to-noise ratio 
(SNR)

• Dark current can be broken into two components:
• Bulk dark current: originates from material selection and the quality of its 

growth (presence of defects, etc)
• Surface dark current: originates from the fabrication processing

• While much research has focused on the growth of materials to 
mitigate bulk dark current, it is likely that it cannot be removed 
entirely and there is benefit to explore the surface dark current 
portion. This is especially critical as devices get smaller.

•  Since surface dark current is introduced during the fabrication 
processing, namely etching the material to form mesa devices, it 
is possible in theory to remove all surface dark current by 
forming devices without etching

• This is the motivation behind developing diffused planar APDs

Defining the Dark Current Problem

Substrate

UID layer

N-doped layers

P-doped layers

Mesa architecture devices

Planar architecture devices
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• Planar APDs are unique as they do not require etching which 
introduces surface dark current and thus can influence premature 
breakdown

• Recently, our work has centered on the development of planar 
APDs through diffusion processing whereby Zn (p-type) is diffused 
into a n-type Sb-based material stack to form a p-n junction

• ZnO is deposited onto the material stack and then undergoes high 
temperatures to diffuse the  Zn into the structure 

Planar APDs and Novel Diffusion Processing

https://imr.osu.edu/research/core-facilities/nanotech-west-
laboratory/

Zn diffusion into our material systems via ALD 
has not been published in literature
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• We have developed a two-pronged study to investigate the diffusion conditions into two 
materials of interest for our group. These materials serve as the multiplier and absorber of 
more complex separate absorption, charge, and multiplication (SACM) APDs that have 
demonstrated high gain (M=278)[16] previously

Sb-based APDs for Diffused Planar Investigation

InP Substrate
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Study I:Planar AlGaAsSb PIN APD 
Study II: Planar GaAsSb/AlGaAsSb SACM APD 

[16]



• Preliminary current-voltage 
measurements of planar 
GaAsSb/AlGaAsSb SACM 
APDs show promise with 
visible rectifying behavior

• Follow-on work will focus 
on the further reduction of 
the dark current by 
optimizing the planar 
processing

Preliminary Work 

7

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Cu
rr

en
t (

A)

Voltage (V)

Current-Voltage of Planar GaAsSb/AlGaAsSb SACM APDs

20 um 30 um 50 um 80 um 100 um

150 um 200 um 250 um 350 um 500 um

Devices fabricated with varying diameters



• The development of planar APDs gives rise to additional fabrication challenges that must be 
addressed to mitigate the surface dark current

• These include optimization of the processing to reach sufficient Zn diffusion depths for  
producing a p-n junction

• Follow on work will be investigating the incorporation of guard rings into the design to serve as 
an alternative conductive pathway and further lower the surface dark current

• Significant research can be addressed with optimization of guard rings in addition to the 
diffusion planar fabrication processing

• Secondary diffusion can also be considered

Technical Challenges and Future Work
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Advantages Disadvantages
Potential to eliminate surface 

leakage current
Method of diffusion requires 

optimization

Potential for high gain (>100) Additional considerations may 
be required such as guard 

rings or secondary diffusion

Diffused Planar Sb-based APDs on InP Substrates
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