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• Traditional model based control methods may not work well for
certain complex aircraft or extreme changes in vehicle parameters.
• However, traditional controllers can be verified and do not require training

data
• AI-based control methods can handle these cases

• However, AI-based controllers are black boxes and require a large training
data set

• A controller that combines both strategies could potentially
outperform either alone, while mitigating some of the disadvantages

Motivation

https://arc.aiaa.org/doi/epdf/10.2514/6.2016-1753



• A Physics-Informed Neural Network (PINN) is a neural
network that uses prior physics knowledge as part of its
structure or loss function.
• Integrating neural networks and physics models like this

combines their advantages and can also result in
• Reduced training data requirements
• Increased generalizability
• Human-readable neural network output

• A type of PINN known as a Deep Lagrangian Neural Network
(DeLaN) has been developed to control a simulated
quadrotor UAV and is being tested against more established
controller types.
• Currently, its performance is being compared to that of a

Feed Forward Neural Network (FFNN)-based controller.
• This presentation details the FFNN controller’s development

and comparison to the DeLaN controller.

Introduction



General Structure
• Simulink is used to simulate a

quadcopter performing a
trajectory following task.
• LQR and PID controllers generate

desired acceleration and attitude
states from trajectory waypoints.
• Both controllers use an inverse

model-based structure where the
neural network serves as the
inverse model of the vehicle,
transforming the desired and
current system states into
actuation forces and torques to
be applied to the plant.

Bennet Breese 
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• Six fully connected layers
• Maximum width of 64 neurons
• Input is an 18-value system state vector
• Output is a vector of six component forces and torques

FFNN Structure



• The training dataset for both the DeLaN and the FFNN was generated
by subjecting the simulated quadcopter to random forces and torques
and collecting the resulting system states.
• The dataset contains pairs of states and actuation forces that were

the inputs and desired outputs for the network.

FFNN Training



• The Pre-trained FFNN controller was tested against the DeLaN
controller in a trajectory-following simulation, with varying amounts
of training data.

Offline Learning Results
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• Online Learning was implemented for the FFNN and compared
against the DeLaN controller’s online learning performance

Online Learning Results



• The Physics-Informed DeLaN
controller shows superior
performance at trajectory
following compared to the ‘black
box’ FFNN controller.
• Lower trajectory error
• Less training data required to

achieve peak performance

Conclusions

FFNN

DeLaN



• Now: Compare responses to sudden vehicle mass change during flight
• Soon: Real-time hardware test (Crazyflie UAV platform)
• Later: Implement DeLaN controller for more complex aircraft (flexible

wing)

Next Steps

https://www.bitcraze.io/products/crazyflie-2-1/


