

Direct Ink Write Processing Of Signal Crossovers Using Aerosol Jet Printing Method

Student:	Lucas Clark						
Student Email:		cla	clark.567@wright.edu				
Faculty:	Ahsan	Ahsan Mian					
Faculty Email: ah		ah	san.mian@wright.edu				
AFRL Sponsor:			Emily Heckman				
AFRL Directorate:		te:	AFRL/RY				

Presentation Outline

- Introduction
- Outline
- Crossover Structure Designs
- Results
- Conclusions

Crossovers: Introduction

- Efficient Electronic Integration Requires Signals To Crossover One Another
- RF-DC, RF-RF, DC-DC Signal Crossovers

Current Strategies:

- Multilayered PCBs
 - High Performance (Low Insertion Loss and High Isolation)
 - High Cost
- Surface Mount Technology (SMT) Devices
 - Large Physical Space (5.08 x 5.08 x 1.8 mm³)
 - Rigid Design

Aerosol Jet Printing: Introduction

- Direct Write Technology Create Microscale and Nanoscale 2D or 3D Functional Structures on Flat or Conformal Surfaces
- Materials Include Variety of Aerosolization Capable
 Materials
 - Colloidal Inks
 - Nanoparticle-filled Inks
 - Diluted Thick-film Pastes
 - Thermosetting and UV Curable Polymer Solutions

Aerosol Jet Printing: Process

- Ultrasonic or pneumatic atomization of the ink
- Mist of droplets dense in metal, dielectric, or organic material
- Delivered to the deposition head by a carrier gas (dry nitrogen)
- Focused into a tight stream by coaxial sheath gas
- Deposition onto a substrate 2 to 5 mm below the nozzle

Aerosol Jet Printing: Advantages

- Creation of Features With Dimensions As Small As 5 μm And Up To Several mm
- Wide Range Of Materials
- Ultrasonic Atomization For Ink Viscosities Up to 7 cP
- Pneumatic Atomization For Ink Viscosities Up To 1000 cP

Pros and Cons

Pros:

• Flip Chip Soldering

Cons:

- Limited Frequency Range
- Limited Power Handling
- Design Revolves Around The Chip

Direct Write Technology

Pros:

- Printing at specific locations
- Features as small as 5 μm
- Wide range of materials
- Design Freedom

Cons:

Ink availability

Outline

Outline

Objective:

Reliably Print Crossover Structures Structures Under Study:

- Dielectric Pad Design
- Dielectric Ramp Design

Materials Under Study:

- Benzocyclobutene (BCB, dielectric $[\epsilon_r=2.65 (1 \text{ GHz})]$, thermally curable)
- Norland Electronic Adhesive 121(NEA, dielectric [ε_r=4.04 (1 MHz)], UV curable)
- Electroninks 615 (EI-615, conductor, thermally curable)

Equipment

- Optomec's AJ 200
- Agilent 8720ES S-parameter
 Network Analyzer
- BK Precision 1743b DC Power
 Supply
- FLIR ETS320 Thermal Camera
- Keyence, DekTak, and Multimeter

Outline

- 2 Crossover Structures Were Designed (Pad And Ramp)
- 5 NEA and 5 BCB Crossover Structures Were Printed
- EI-615 Was Printed Over The Crossover And Connected The DC Circuit Traces
- Samples Were Connected To A Network Analyzer And DC Power Supply
- DC Carrying Capability And Changes In The S21 Parameter Were Recorded
- Recorded Heat Spread Via A Thermal Camera

Prefabricated boards were used as the substrate for testing the crossovers

Ink Settings

Ink	Nozzle Size (µm)	Sheath Gas Flow (ccm)	Ultrasonic Atomizer Gas Flow (ccm)	Ultrasonic Atomizer Power (mA)	Pneumatic Atomizer Gas Flow (ccm)	Pneumatic Exhaust Gas Flow (ccm)	Curing Type
BCB	300	30	35	0.5	Х	Х	Thermal
NEA 121	300	40	X	X	910	850	UV
EI-615	150 or 200	50	7	0.3	X	X	Thermal

Creation Of Tool Paths

mport Generic Fill Image	s Export Tool Config Ref I *		
Serpentine Fill	General Settings		
Angle 90 🔶 Deg	Trace Width 0.037 🖈 Units		
Max Join Dist. (Trace Width Multiple)	Min Overlap 0 - Max Overlap		
Enforce bounds	Join All Segments		
Island Detect	V Offset Outline		
	Remove Outline		
Sementine	Auto Radius Fill		
Serpenane	Fill to Different Layer		
Perimeter Fil	Circle Fill		
Continous	5 🚔 Degrees / Arc		
Perimeter	Circle		
Miscellaneous Tools	Auto Radius Al Polylines Radius 0.050 💠		
Sort	Apply		
Join Undo	3		

Pad Design

Ramp Design

Conductive Trace Designs

Printing Of Crossover Structures

Completed Crossovers

Completed Crossovers

Results: BCB Trench Filling

Results: NEA Trench Filling

Results: Pads Vs Ramps

Results: Pads Vs Ramps

NEA Pad Tilting

Conformal Printing Print Direction Discolored Area Is A Repaired Print Time 2.25.4

Results: NEA Pad I-V Curves

NEA Pad Structures

- Average Survival Current Up To 0.5 A
- Max Survival Current Up To
 1.39 A

Results: BCB Ramp I-V Curves

BCB Ramp Structures

- Average Survival Current Up To 1.3 A
- Max Survival Current Up To
 2.772 A

BCB Ramp Crossover Structures

Results: NEA Pad Power Handling

NEA Pad Structures

- Average Survival Power Up To 0.36 W
- Max Survival Power Up To
 2.224 W
- Largest ΔS21: 0.271 dB

Results: BCB Ramp Power Handling

BCB Ramp Crossover Structures

WRIGHT STATE UNIVERSITY

-

Failure Analysis: BCB Ramp

2nd Test

1st Test: Before/After

Failure Analysis

Thermal Analysis: BCB Ramp

Thermal Analysis: NEA Pad

Comparison To COTS SMT Devices

COTS SMT Devices:

- MLO[®] SMT RF-DC Crossover Footprint: 4.98 x 4.98 x 0.46 mm³
 - Specifications: 9 W at 6 GHz
- X2BS Crossover Footprint: 5.08 x 5.08 x 1.8 mm³
 - Specifications: 10 W at 6 GHz

Printed Crossovers:

- Pad Design: 3.8 x 2.3 x 0.365 mm³, 2.224 W at 10 GHz
 - 3.6x vol. reduction and 2.8x area reduction to MLO[®]
 - 15.7x vol. reduction and 3.0x area reduction to X2BS
- Ramp Design: 3.65 x 1.15 x 0.141 mm³, 6.93 W at 10 GHz
 - 19.3x vol. reduction and 5.9x area reduction to MLO[®]
 - 78.7x vol reduction and 6.1x area reduction to X2BS

Conclusions

5 NEA Pad and 5 BCB Ramp Crossover Structures Were Printed

	Maximum Power (W)	Maximum ∆S21 at 10 GHz (dB)	Maximum Temperature (°C)
NEA Pads	2.224	0.271	273.0
BCB Ramps	6.93	0.339	248.6

- Comparable to COTS SMT Components:
 - Slightly Less Power Handling
 - 6.1x reduction in physical board space
 - Extremely Tailorable: Materials, Shape, Specifications

Acknowledgements

- Advisor: Dr. Ahsan Mian
- AFRL Sponsor: Dr. Emily Heckman
- Printronics Team: Dr. Carrie Bartsch, Dr. Fahima Ouchen, Dr. Roberto Aga, Laura Davidson, Dr. Twinkle Pandhi, and William Metzger
- Packaging Lab
- Funding: AFRL SFFP, DAGSI (SOCHIE Control# RY11-WSU-22-3 FE 2), WSU (Grant #671512)
- This material is based on research sponsored by the Ohio Department of Higher Education and Strategic Council for Higher Education under Ohio House Bill 49 of the 132nd General Assembly. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding and copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied by the Strategic Council for Higher Education and the Air Force Research Laboratory (AFRL) or the U.S. Government.