

Multiscale Modeling of Composite Materials with the Generalized Finite Element Method

Student: Bryce	Bryce Mazurowski			
Student Email: brycepm2@Illinois.edu				
Faculty: Prof. C. Armando Duarte				
Faculty Email: caduarte@Illinois.edu				
AFRL Sponsor:	Dr. Patrick O'Hara			
AFRL Directorat	e: AFRL/RQHF			

Motivation

Solve problems where separation of length scales does not hold

- Extreme environment structures
- Local structural features
- Sharp-gradient loading
- Material damage
- Ceramic Matrix Composite (CMC) body

Goal: Incorporate heterogeneity into global structure behavior efficiently

Strategy: Adopt homogenized material models everywhere except at localized hot-spots

Keller et al. Handbook of Ceramic Composites. 10.1007/0-387-23986-3_16

Oxide-Oxide CMC Failure

- Fiber buckling
- Fiber pullout
- Matrix cracking
- Delamination

Generalized FEM

$$u(x) = \underbrace{N_{\alpha}(x)a_{\alpha}}_{\text{FEM}} + N_{\alpha}E_{\alpha i}(x)\hat{a}_{\alpha i}$$

- Augment standard FEM space with *enrichment functions*
- Introduce solution features directly to approximation space
- Remove meshing restrictions
- GFEM Applications
 - Fracture Mechanics
 - Material discontinuities
 - Contact
 - Porous media

Proposed GFEM^{gl}

Material heterogeneity and nonlinearity incorporated only at localized hot spots

Perforated plate with Localized Plasticity $r = \frac{L}{4}$

 $\sigma_y = 350 \text{ MPa}$ K = 210 MPa

15L

32

r

_

Plasticity with linear isotropic hardening

		-				
	$ E_1 (\text{GPa})$	E_2 (GPa)	ν_1	ν_2	G_1 (GPa)	G_2 (GPa)
Steel	210	_	0.3	-	80.8	-
Homogenized	132.3	168.8	0.251	0.235	40.9	54.2

Von Mises Stress

3.50+08
- 3 0+ 8
- 2.59+8
- 20+8 so
- 1.59+8
- 1e+8
- 5e+7
- 0.0++00

Equivalent Plastic Strain

1.50e-03 1.40e-3 - 1.30e-3 - 1.20e-3 - 1.10e-3 - 1.00e-3 - 9.00e-4 – 8.00e-4 - 7.00e-4 – 6.00e-4 – 5.00e-4 - 4.00e-4 - 3.00e-4 - 2.00e-4 - 1.00e-4 0.00e+00

Validation Experiments

Conclusions

- GFEM^{gl} can recover localized nonlinear material when majority of global domain uses homogenized linear elastic material
- Damage models can capture coupon-level behavior of CMCs

Future Work

- Verification and validation of CMC damage models
- Add microstructure-informed damage models into GFEM^{gl}
- Use GFEM^{gl} in an IGL-GFEM^{gl} scheme to capture realistic structures
- Test on other composite materials

