1. **Research Title:** Efficient Small-Scale Propulsion and Power Systems
2. **Individual Sponsor:**

 Dr. Mark Fernelius
 AFRL/RQTC
 1790 Loop Road North, B490
 WPAFB, OH 45433-7251
 mark.fernelius.1.ctr@us.af.mil

3. **Academic Area/Field and Education Level**

 Engineering Physics, Applied Physics, Mechanical Engineering, Aerospace Engineering,
 Chemical Engineering, Electrical Engineering (MS and/or PhD level)

4. **Objectives:** The proposed thesis topic aims to advance the state-of-the-art in small-scale
 propulsion and power systems, utilizing advanced technology to achieve improvements in
 efficiency, power density, and operability.

5. **Description:** Emerging propulsion and power needs drive combustion systems towards higher
 efficiencies and power densities. New approaches are being developed in small-scale systems
 (on the order of tenths to hundreds of kilowatts). Efficient small-scale propulsion and power
 research has focused on the coupling of combustion heat release into useful energy conversion.
 Research has included optimization of small-scale unmanned aerial vehicle propulsion and
 power systems, including conversion of Otto cycle (spark ignition) engines to heavy fuels,
 advanced ignition systems, propeller/engine optimization, and development of enabling
 components and engine concepts for high power density systems. Small-scale demonstrations
 of advanced turbine concepts are also currently being explored including innovative cycles.
 Other areas of interest include hybrid systems, Diesels with high power density, regenerative
 and other novel internal and external combustion cycles. A wide variety of research
 opportunities are available utilizing the Small Engine Research Laboratory, including high speed
 instrumentation (up to 5 MHz per channel), AVL INDI SMART combustion analyzers, high speed
 imaging (up to 100,000fps), laser diagnostics, computational tools, and research engines.
 Recent projects have included plasma ignition studies, engine combustion research using
 alternative/bio fuels, hybrid propulsion/power systems, and novel Brayton-based cycles.

6. **Research Classification/Restrictions:** Most aspects of this research fall under the 6.1 basic
 research classification. However, some aspects and the Small Engine Research Laboratory at
 Wright-Patterson AFB are FOUO with export control/ITAR restrictions.

7. **Eligible Research Institutions:** Indicate to what organizations this topic should be provided